
ucEval Function
See also ucEvaluate

Evaluates an expression in one step.

Syntax

ucEval(expression)

ucEval is a convenient one-step method for evaluating a math expression.    It is adequate for general
situations where the expression is not recalculated many times in a loop.    It is the same as calling
ucParse, and ucEvaluate, then returning a value and releasing the expression from the definition
space.    For loops which repeat the same expression, use ucParse and ucEvaluate separately for the
fastest results. ucEval returns a value in double precision.

Example 1:

When you run this example, enter an expression such as:    5+4*10

UserExpression$ = InputBox("Enter a math expression")
MsgBox ucEval(UserExpression$)

Example 2:

Generally, your code should check for errors when ucEval is invoked.    To test this example, create a
form with a command button, and paste in the following code:

Sub Command1_Click()
        Dim UserExpression As String, Answer As Double
       
        On Error GoTo ErrorHandler
       
        UserExpression = InputBox("Enter a math expression")
        Answer = ucEval(UserExpression)
       
        If ucError Then
                MsgBox ucErrorMessage, vbExclamation
        Else
                MsgBox Answer, , "The answer is"
        End If
Exit Sub
ErrorHandler:
        MsgBox Error, vbExclamation
End Sub

Help file generated by VB HelpWriter.

ucEvaluate Function
See also ucEval,    ucParse, and ucVariableValue

Rapidly evaluates an expression which has already been parsed.

Syntax

ucEvaluate(ExpressionPtr)

In situations where the same expression is being evaluated repeatedly with changing values inside a
loop, it is better to use ucEvaluate (instead of the one-step ucEval function) for much faster results.    An
expression must first be parsed with ucParse, which changes the string expression into simplified
internal instructions for fast results and returns a pointer to the instructions representing the parsed
expression.    The returned pointer is a long integer which is to be used as the ExpressionPtr argument
for ucEvaluate.    This function returns a number in double precision.

Example:

This example uses the ucEvaluate function to do a simple summation of a user expression.    Notice that
the time-consuming ucParse function is used before the repetitious loop, and the fast ucEvaluate
function is inside the loop.    To run this example, place a command button on a form, and paste in the
following code:

Private Sub Command1_Click()
        Dim x As Double, Total As Double, UserExpr As String
        Dim ExpressionPtr As Long, VariablePtr As Integer

        UserExpr = InputBox("Enter a math expression (such as x^2+5*x+14)")

        VariablePtr = ucDefineVariable("x")
        ExpressionPtr = ucParse(UserExpr)

        For x = 1 To 1000
                ucVariableValue(VariablePtr) = x
                Total = Total + ucEvaluate(ExpressionPtr)
        Next

        MsgBox "The total is: " & Total
        ucReleaseExpr
End Sub

Help file generated by VB HelpWriter.

ucParse Function
See also ucEvaluate, and ucReleaseExpr

Parses an expression and returns a pointer for use with ucEvaluate.

Syntax

ucParse(expression)

The expression argument is a text string containing a math expression.    ucParse changes the
expression into simple internal instructions and returns a long integer which is a pointer to these
instructions for subsequent use with ucEvaluate.    This technique requires more programming steps than
using the straightforward ucEval function, but it has a very substantial speed advantage when an
expression must be re-evaluated many times in a loop.    Parsing an expression is a relatively slow
process because it handles text, and has many things to sort out.    The result however is a simplified,
and thus much faster set of instructions for ucEvaluate to handle.    The slow process of parsing is done
once, before starting the loop, and ucEvaluate which is inside the loop is left with a relatively light task
for it to do.

Example:

This example uses the ucEvaluate function to do a simple summation of a user expression.    Notice that
the time-consuming ucParse function is used before the repetitious loop, and ucEvaluate is inside the
loop.    To run this example, place a command button on a form, and paste in the following code:

Private Sub Command1_Click()
        Dim x As Double, Total As Double, UserExpr As String
        Dim ExpressionPtr As Long, VariablePtr As Integer

        UserExpr = InputBox("Enter a math expression (such as x^2+5*x+14)")
   
        VariablePtr = ucDefineVariable("x")
        ExpressionPtr = ucParse(UserExpr)

        For x = 1 To 1000
                ucVariableValue(VariablePtr) = x
                Total = Total + ucEvaluate(ExpressionPtr)
        Next

        MsgBox "The total is: " & Total
        ucReleaseExpr
End Sub

Help file generated by VB HelpWriter.

ucDefineFunction Procedure
See also ucDefineVariable, and Technical Limitations

Defines, or redefines a user function.

Syntax

ucDefineFunction userdef

The userdef argument must consist of a text string which includes a function name, function
parameter(s) enclosed in parenthesis (or empty parenthesis for no parameters), then an equal sign,
followed by the function's definition.    The naming convention is similar to that of VB.    Function
definitions can include previously defined user functions and variables.

Example:

ucDefineFunction "area(length,width) = length*width"
ucDefineFunction "frac(x)=abs(abs(x)-int(abs(x)))"
ucDefineFunction "test() =    z + 5"      ' assuming z is a variable already defined

MsgBox ucEval("frac(150/17) * area(20,30)")

Help file generated by VB HelpWriter.

ucDefineVariable Function
See also ucVariableValue,    ucDefineFunction, and Technical Limitations

Defines, or assigns a value to a variable.

Syntax

ucDefineVariable(userdef)

The userdef argument is a string which can consist of either: 1) a variable name by itself to be initialized,
or 2) a variable name, then an equal sign followed by an expression which evaluates to the value to be
assigned to the variable.    The variable naming convention is similar to that of VB.    Variable definitions
may include previously defined user functions and variables.

ucDefineVariable returns an integer pointer for the variable.    This pointer can be used as the argument
for ucVariableValue, which also lets you assign a value to variable, but is faster because it is done more
directly.    In some cases you may not need this pointer.    If that is the case, and if you are using VB, an
alternative syntax is:

ucDefineVariable userdef

Note: 300 variables can be defined.    Variables have a separate definition space, and unlike user
functions, redefining the same variable does not take up additional space.

Example 1:

ucDefineVariable "pi = atn(1) * 4"
ucDefineVariable "MyVar = pi + 10"

MsgBox ucEval("3pi+MyVar / 2")

Example 2:

Dim VariableX As Integer, VariableY As Integer
Dim x As Double, y as Double, Total As Double, ExpressionPtr As Long

VariableX    = ucDefineVariable("x")
VariableY    = ucDefineVariable("y")

ExpressionPtr = ucParse("x^2+y^2")

For x = 0 To 100
        ucVariableValue(VariableX) = x
        For y = 0 To 100
                ucVariableValue(VariableY) = y
                Total = Total + ucEvaluate(ExpressionPtr)
        Next
Next

MsgBox Total

Help file generated by VB HelpWriter.

ucError Property
See also ucErrorMessage, and Error Handling

Returns an error number corresponding to the most recently parsed expression.

Syntax

ucError

The ucError property returns an integer value every time ucParse, ucEval, ucDefineFunction, or
ucDefineVariable is called.    A value of 0 means that the expression was properly parsed.    Any other
value indicates that the expression was not parsed due to an error in the expression.    For the list of
error codes, see ucErrorMessage.

Example:

MyExpr$ = "3 * (5 * 2"
ExprPtr = ucParse(MyExpr$)
If ucError Then MsgBox ucErrorMessage
' This will display: Mismatched parenthesis

Note:    ucError does not handle errors for ucEvaluate (except for factorial overflow).

Help file generated by VB HelpWriter.

Error Handling
See also ucError, and ucErrorMessage

This component detects only parsing-related errors (with the exception of factorial overflow).   
Procedures which can return a parsing error are:    ucEval, ucParse, ucDefineVariable, and
ucDefineFunction.    ucError returns a numerical value representing the error, and ucErrorMessage
returns a text string containing the error message.

No error checking is done when expressions are evaluated (except for factorial overflow).    Therefore,
your program should include an error handling routine to trap Division by Zero and Overflow .
Functions which require external error handling are:    ucEval, ucEvaluate, and ucDefineVariable.

Help file generated by VB HelpWriter.

Introduction
See also Getting Started,    License, and Contacting the Author

UCalc Fast Math Parser is an ActiveX component which allows programs to evaluate math expressions
that are defined at run time.    It includes a one step ucEval function for simplicity, as well as a very fast
ucEvaluate function, designed for use in loops which repeat the same operation with different values.   
This component supports conventional math operators and functions, as well as user variables and
functions.    It is suitable for heavy duty number crunching, and uses the same robust code that is behind
the highly rated UCALC for Windows program.

One Step Evaluation

An expression can be evaluated in just one step, using ucEval as in the following example:

UserExpression$ = InputBox("Enter a math expression")
' The user may enter something like:    5-(3+2)/8+10

Text1 = ucEval(UserExpression$)

Note:    ucEval is designed for programming convenience,    but should not be used in repetitions where
speed is a concern.    Instead, use ucEvaluate for greater speed.

Fast Evaluations

The following technique uses more steps than ucEval, but is designed for maximum speed.    The
ucParse function first parses an expression into simple instructions, and returns a pointer for the
expression.    Once parsed, subsequent evaluations using ucEvaluate will be very fast.    Here's an
example of how it works:

Dim x As Double, Total As Double, UserExpr As String
Dim ExpressionPtr As Long, VariablePtr As Integer

UserExpr = InputBox("Enter a math expression")
' The user may enter something like:    x^2+5*x+14

VariablePtr = ucDefineVariable("x")
ExpressionPtr = ucParse(UserExpr)

For x = 1 To 1000
        ucVariableValue(VariablePtr) = x
        Total = Total + ucEvaluate(ExpressionPtr)
Next

MsgBox "The total is: " & Total
ucReleaseExpr

User Functions and Variables

The following example shows how user-defined functions and variables are supported.

ucDefineFunction "area(length,width) = length*width"
ucDefineVariable "MyVar = 123"

Answer = ucEval("100*MyVar+area(5,20)")

Help file generated by VB HelpWriter.

ucErrorMessage Function
See also ucError, and Error Handling

Returns an error message.

Syntax

ucErrorMessage[(errornumber)]

This function returns a text string which describes a parsing error corresponding to the errornumber
argument.    This argument is an integer.    If the optional argument is omitted, then a message
associated with the most recent parsing error is returned.    (The argument is not optional for VB 4.0
users.    Use errornumber = -1 to get the most recent error).   

Error Number Error message
0 (None)
1 (Reserved)
2 Mismatched parenthesis
3 [Function/Variable] is not defined
4 Invalid binary number
5 Invalid octal number
6 Invalid hexadecimal number
7 Factorial overflow (returned by ucEvaluate)
8 (Reserved)
9 Invalid expression
10 Definition space is full
11 Invalid number of function parameters

Example:

MyExpr$ = "3 * (5 * 2"
ExprPtr = ucParse(MyExpr$)
If ucError Then MsgBox ucErrorMessage
' This will display: Mismatched parenthesis

Note:    Errors such as division by zero and overflow should be handled by your program.

Help file generated by VB HelpWriter.

ucReset
See also ucReleaseExpr

Initializes or resets the math component.

Syntax

ucReset

When invoked, parsed expressions are released from the definition space, and user defined functions
and variables are erased.

Help file generated by VB HelpWriter.

ucReleaseExpr Procedure
See also ucParse, and Technical Limitations

Releases expressions from the definition space.

Syntax:

ucReleaseExpr[(number)]

Every time ucParse is invoked, instructions for the parsed expression accumulate inside a certain
definition space.    An accumulation of too many parsed expressions will eventually cause the parser to
run out of definition space.    Once full, it will generally cause ucError to return error number 10 when
ucParse, ucEval, ucDefineFunction, or ucDefineVariable are invoked.    To avoid this, each ucParse
statement should be released if no longer needed.    ucReleaseExpr without the optional argument
releases the most recently parsed expression.    (The argument is not optional for VB 4.0 users).    When
the number argument is used, it represents the number of expressions to release, starting from the most
recently defined one back to the oldest.    The number argument is an integer.

A maximum of 200 expressions can be defined without having to be released.    However, the definition
space may fill up even before then, depending on the length -- in terms of number of instructions -- of all
the parsed expressions combined.    The maximum number of instructions is set at 1000.    In a user
expression being parsed, each operator, pair of parenthesis, or built-in function counts as one
instruction, and a call to a user function takes up one instruction per argument, plus one for the function
itself.    ucDefineFunction also adds instructions to the same definition space.

If ucError returns an error number (non-zero), it means that the expression was not parsed, and no
definition space was taken.    ucReleaseExpr checks ucError first to make sure the recent expression
was successfully parsed before attempting to release it.    (Therefore it is not necessary to check for
errors before invoking it).

Caution:    Each ucReleaseExpr call should have matching expressions for it to release.    It should not
be used all by itself.    If invoked without a recently parsed expression, it may corrupt the definition of
recently defined user functions.

Example 1:

You will find this same example also under the help topic for ucEvaluate.    Although it is not easy to
actually measure it, the concept is that you can click on the command button as many times as you like
without the definition space filling up, thanks to the ucReleaseExpr statement.

Private Sub Command1_Click()
        Dim x As Double, Total As Double, UserExpr As String
        Dim ExpressionPtr As Long, VariablePtr As Integer

        UserExpr = InputBox("Enter a math expression (such as x^2+5*x+14)")

        VariablePtr = ucDefineVariable("x")
        ExpressionPtr = ucParse(UserExpr)

        For x = 1 To 1000
                ucVariableValue(VariablePtr) = x
                Total = Total + ucEvaluate(ExpressionPtr)
        Next

        MsgBox "The total is: " & Total

        ucReleaseExpr
End Sub

Example 2:

ucReleaseExpr simply sets back the definition space pointer.    This doesn't have an effect until the next
expression is parsed (or a user function is defined), at which time the released instructions will be
overwritten.    Therefore the location of ucReleaseExpr in your code is not so important, as long as there
is a matching expression for it to release.    The following is a fragment from the previous example, with
the difference being that ucRelease was placed right next to ucParse instead of at the end, to insure
that the proper expression is released, as you add more lines of code to your project.

        VariablePtr = ucDefineVariable("x")
        ExpressionPtr = ucParse(UserExpr)
        ucReleaseExpr

        For x = 1 To 1000
                ucVariableValue(VariablePtr) = x
                Total = Total + ucEvaluate(ExpressionPtr)
        Next

Example 3:

This example demonstrates how the optional argument can be used in order to release several
expressions at a time.    It plots a parametric equation which requires two expressions to be parsed.    In
order to run this example, place a command button, two text boxes, and a picture box on a form.   
Enlarge the picture box to a comfortable viewing size.    Then paste the following code in the General
Declarations area.    (This simple example doesn't remove the starting stray line).

Private Sub Form_Load()
        ' You can change these at runtime
        Text1 = "cos(t)-cos(2t)"
        Text2 = "sin(t)-sin(2t)"
End Sub

Private Sub Command1_Click()
        Dim UserEq1 As Long, UserEq2 As Long
        Dim theta As Double, thetaPtr As Integer
        Dim x As Double, y As Double
       
        Picture1.Cls
        Picture1.Scale (-2, 2)-(2, -2)

        thetaPtr = ucDefineVariable("t")
        UserEq1 = ucParse(Text1)
        UserEq2 = ucParse(Text2)
        ucReleaseExpr 2      ' Releases both UserEq1 & UserEq2 when done
       
        For theta = 0 To 6.28 Step 0.05
                ucVariableValue(thetaPtr) = theta
                x = ucEvaluate(UserEq1)
                y = ucEvaluate(UserEq2)
               
                Picture1.Line -(x, y)
        Next
End Sub

Help file generated by VB HelpWriter.

ucTrigMode Property
See also Operators

Sets or returns the trigonometric angle mode.

Syntax:

ucTrigMode [=mode]

Use this property to find out the current trigonometric mode, or to set it to one of the following:

1    Radian
2    Degree
3    Gradient

ucTrigMode affects the following functions: SIN, COS, TAN, SEC, CSC, COT, ASIN, ACOS, and ATAN.   
This property returns an integer.    The default value is 1 for radian mode.

Example:

' Default mode is 1
MsgBox "TrigMode: " & ucTrigMode & "    sin(30)= " & ucEval("sin(30)")
ucTrigMode = 2            ' Sets the mode to degrees.
MsgBox "TrigMode: " & ucTrigMode & "    sin(30)= " & ucEval("sin(30)")

Help file generated by VB HelpWriter.

ucVariableValue Property
See also ucDefineVariable

Gets or sets a variable value directly.

Syntax

ucVariableValue(VariablePtr) [= value]

The VariablePtr argument is an integer pointer for a variable which has been previously defined with
ucDefineVariable.    The assigned value is double precision.    Although ucDefineVariable is also capable
of assigning a value to a variable, it does so indirectly after parsing a text expression.    ucVariableValue
allows you to assign a value directly to the variable, making it the ideal companion for ucEvaluate when
maximum speed is desired inside a loop.

Example:

This example plots a rough 3D graph, demonstrating the use of ucVariableValue inside a loop.    In
order to run this example, place a command button, a text box, and a picture box on a form.    Enlarge
the picture box to a comfortable viewing size.    Then paste the following code in the General
Declarations area.

Private Sub Form_Load()
        ' You can modify this during runtime
        Text1 = "(sin(x)+cos(z))*z/3"
End Sub

Private Sub Command1_Click()
        Dim x As Double, z As Double, UserEq As Long
        Dim VariableX As Integer, VariableZ As Integer
       
        Picture1.Cls
        Picture1.Scale (-10, 10)-(10, -10)

        VariableX = ucDefineVariable("x")
        VariableZ = ucDefineVariable("z")
       
        UserEq = ucParse(Text1)
       
        For z = -10 To 10 Step 0.5
                For x = -10 To 10 Step 0.5
                        ucVariableValue(VariableX) = x
                        ucVariableValue(VariableZ) = z
                        Picture1.Line -((z - x) * 0.75, (ucEvaluate(UserEq) + z) * 0.75)
                Next
        Next
        ucReleaseExpr
End Sub

Help file generated by VB HelpWriter.

Built-in Functions and Operators
See also Precedence, and Notation

Symbol Equivalent Description Example
() Prioritizes an

expression
5*(1+1) = 10

! FACT Factorial 5! = 120
% Percentage 35% = .35
^ ** Raised to the power of 4 ^ 5 = 1024
* Multiply by 3 * 16 = 18
/ Divide by 9 / 2 = 4.5
MOD Modulo (remainder) 7 MOD 4 = 3
+ Add 1 + 1 = 2
- Subtract 9 - 5 = 4

> Greater than 9 > 2 = 1      *see note
< Less than 7 < 4 = 0
== = Equal test 5 == 4 = 0
>= => Greater or equal 3 >= 3 = 1
<= =< Less or equal #h3E <= 9 = 0
<> Not equal #b10101 <> 20 = 1

NOT Bitwise NOT NOT(15) = -16
AND & Bitwise AND #b101 AND #h1E = 4
OR | Bitwise OR 13 OR 6 = 15
XOR Bitwise Exclusive OR 9 XOR 3 = 10
EQV Bitwise Equivalence 6 EQV 9 = -16
IMP Bitwise Implication 1 IMP 5 = -1

SIN Sine sin(pi) = 0      *see note
COS Cosine cos(pi) = -1
TAN Tangent tan(pi) = 0
ASIN Arcsine asin(1) = 1.570
ACOS Arcosine acos(-1) = 3.141
ATAN ATN Arctangent atan(0) = 0

SINH Hyperbolic sine sinh(3) = 10.01
COSH Hyperbolic cosine cosh(2) = 3.76
TANH Hyperbolic tangent tanh(1) = 0.76
COTH Hyperbolic cotangent coth(1) = 1.31
SECH Hyperbolic secant sech(0) = 1
CSCH Hyperbolic cosecant csch(1) = 0.85
ASINH Hyperbolic arcsine asinh(2) = 1.44
ACOSH Hyperbolic arccosine acosh(9) = 2.89
ATANH Hyperbolic arctangent atanh(.1) = 0.10
ACOTH Hyperbolic

arccotangent
acoth(7) = 0.14

ASECH Hyperbolic arcsecant asech(.3) = 1.87

ACSCH Hyperbolic arccosecant acsch(2) = 0.48

ABS Absolute value abs(-8) = 8
EXP e to the power of exp(3) = 20.08
EXP2 2 to the xth power exp2(3) = 8
EXP10 10 to the xth power exp10(3) = 1000
CEIL Round up ceil(6.2) = 7
RND Random number rnd(1) = .969
INT Truncate to an integer int(6.8) = 6
FACT ! Factorial fact(5) = 120
LOG LN Natural log log(16) = 2.77
LOG2 Log base 2 log2(8) = 3
LOG10 Log base 10 log10(100) = 2
SGN SIGN Sign of expression (-1,

0 or 1)
sgn(-9) = -1

SQR SQRT Square root sqr(64) = 8

Note: Relational operators, (>, <, <=, >=, ==, <>) return a 1 or a 0 (for true or false)

The trig examples in the above table assume that "pi" was defined.

(CSC, SEC, and COT are supported as well)

Help file generated by VB HelpWriter.

How to Contact the Author
See also License

The author will be happy to hear comments, or answer questions about licensing for the UCalc Fast
Math Parser component.    You may contact Daniel Corbier using one of the following methods:

E-mail
FastMath@ucalc.com (Internet)
Dancorbier (AOL)
75541,1523 (Compuserve)

Note: E-mail is by far the preferred mode of communication with the author (especially if it requires a
quick response).    When sending e-mail, please include a descriptive subject, so that your message
does not get confused with the large amount of spam coming in.    Include key words such as: ucalc,
math, or parser, etc... to make sure it doesn't slip my attention.

Phone/Fax: 305-233-2604

Postal
Daniel Corbier
20410 SW 92 Place
Miami FL    33189,    USA

Web Page
Be sure to visit    http://www.ucalc.com/dll    from time to time to check up on new information and
updates.

Help file generated by VB HelpWriter.

Operator Order of Precedence
See also Operators, and Notation

Here is the precedence list from highest to lowest priority:

Anything inside parenthesis is performed first    ()
Factorial, percentage !, %
Exponentiation ^
Multiplication, division *, /
Modulo (remainder) MOD
Addition, subtraction +, -
Relational operators <, >, >=, <=, =, <>
AND operator

OR, XOR (exclusive or)
EQV (equivalence)
IMP (implication)

When consecutive operators have the same priority, UCALC evaluates from left to right.    This means
that an expression such as "a-b-c" is evaluated as "(a-b)-c".

Help file generated by VB HelpWriter.

UCALC for Windows
See also Contacting the Author

The technology used in this component is the same one behind the highly rated UCALC for Windows
user program.    UCALC contains various tools for performing calculations, all combined into one
powerful yet simple program.    Here is a highlight of some of its features:

· Expression Evaluator which supports a number of built-in functions, operators, numeric bases,
numeric formats, and modes.

· Unit Converter.    Allows you to convert between units of measure in a flexible manner.    It also
includes a world currency unit category.

· User Solution Modules.    This innovative feature allows users to interactively define and solve
problems by simply filling in the blanks without directly having to manipulate math formulas.

· User Functions & Variables

· Equation Solver which allows you to solve for the unknown value in an algebraic expression.

· Summation Table is a general mathematical tool which can be used for practical things such as
calculating annuity, compound growth, etc...

· Numerical Integration.

· Graphing.    UCALC can plot Cartesian, polar, parametric, 3D equations, or coordinates from
data files.

· General Ledger.    UCALC is not just for heavy duty scientific calculations.    This simple general
ledger provides a convenient way for adding up many numbers.

To download an evaluation copy of this program, or to find out more about it,    visit
http://www.ucalc.com    .

Help file generated by VB HelpWriter.

License Agreement
See also Contacting the Author

UCalc Fast Math Parser 1.0.    © Copyright 1998 by Daniel Corbier.    All rights reserved.

This document serves as a license agreement between Daniel Corbier and you (as an individual or
single entity software developer using this component), pertaining to this TRIAL version of the UCalc
Fast Math Parser component.    For information on how to obtain a different license, visit
http://www.ucalc.com/dll    .    Your usage of this component implies your acceptance to abide by the
terms of this end user license agreement.

1. GRANT OF LICENSE.    Daniel Corbier grants to you a non-exclusive, non-transferable license to
install and use the software on your computer.    This license is conditional, based on the following
limitations: (i) You may not reverse engineer, decompile, disassemble, or    otherwise attempt to modify
the component    (ii)    You may not remove, suppress, hide, or cause your program to skip the opening
message boxes    (iii) You may not use this TRIAL copy for purposes other than evaluation
of the component, or beta testing of your own product.    Visit http://www.ucalc.com/dll for
information on obtaining a different license.

2. DISTRIBUTION.    This component may be distributed under these conditions: (i) All parts of the
component (including documentation and sample project files) must be distributed together.    (ii) The
component and associated files may be distributed as a unit on conventional shareware distribution sites
(iii) The component may be distributed as part of another program which uses it, ONLY if it is part of a
beta test version for which no money is charged, requested, or accepted.    To find out how to obtain a
different license visit http://www.ucalc.com/dll .

3. NOT FOR RESALE:    You may not resell, or otherwise transfer for value this component.    You may
not rent, lease, or lend this component.    You may not include this trial copy in a version of a software
product that is being sold or as part of software which helps generate revenue either directly or indirectly.
Shareware/freeware distributors however, may include the component as part of a larger collection for
which a nominal fee is charged, as long as the fee is for the collection and not the component itself.

4. TECHNICAL SUPPORT.    The component author may provide support on a voluntary basis, but will
not be bound to providing support for the trial copy.    The author will not be bound to provide an
immediate program fix for this trial copy, even in the event that a problem has been brought to his
attention.

5. LIMITED WARRANTY.    This component is provided on an "as is" basis without warranty of any kind,
expressed or implied, including, but not limited to implied warranties of merchantability or fitness for a
particular purpose.    All other warranties are also expressly disclaimed.

6. SUITABILITY.    The persons or companies using this component are solely responsible for thoroughly
testing it to make sure it is works to their satisfaction before incorporating a non-evaluation version into
their programs.    All features are made available for testing purposes in this evaluation copy.

7. EXPORT. You agree to comply with U.S. export laws and regulations concerning the acquisition,
usage or transfer of computer software.

8. GOVERNMENT RESTRICTIONS.    This software and documentation are subject to Restricted Rights,
as expressed under applicable regulations.

Help file generated by VB HelpWriter.

Notation
See also Operators, and Precedence

The syntax for expressions accepted by this component is similar to that of VB.    This component also
supports alternative notations, as shown in the list of built-in operators, as well as the following
enhancements:

Implicit Multiplication

When multiplication is implied, the times symbol (*) can often be omitted, as in the following examples:

Expression Equivalent
x y x*y
3pi + 10 3*pi + 10
5(4+8) 5*(4+8)
(5+5)(3+9) (5+5)*(3+9)
(3+2)8 (3+2)*8

Note:    Implicit multiplication has the same priority as regular multiplication.    For instance '1/2q' is
translated as '1/2*q' not '1/(2q)'.

Numeric Bases

This component supports notations for binary, octal, and hexadecimal numbers.    These numbers must
be preceded by the character    #    followed by b, o, or h for binary, octal, or hexadecimal.

Example:

UserExpression = "#b110101110    AND    #h1AE    OR    #o656"

Help file generated by VB HelpWriter.

Technical Limitations
See also ucReleaseExpr, and ucReset

The following technical limits should be taken into account while using this component:

- A maximum of 300 user variables can be defined.    Once defined a variable cannot be released (except
with ucReset).

- A maximum of 200 user functions can be defined.    Unlike variables which are each stored as one
value, each function uses up some of the definition space in proportion to the length of the function
definition (in terms of number of instructions).    It is possible to run out of definition space before defining 
200 functions.    Functions cannot be released (except with ucReset).    Unlike with variables, when the
same function is redefined it takes up additional definition space.

- A maximum of 200 different parsed expressions can be concurrently active.    Parsed expressions take
up definition space in the same manner as user functions.    Unlike functions however, parsed
expressions can be released from the definition space, using ucReleaseExpr.    It is a good idea to make
use of it, to avoid eventually filling up the definition space.

- The definition space stores a maximum of 1000 instructions.    Every time an expression is parsed
without being released, or a user function is defined or redefined, it accumulates instructions in the
definition space.    In a user expression, each operator, pair of parenthesis, or built-in function counts as
one instruction, and each call to a user function takes up one instruction per argument, plus one for the
function itself.    Once the definition space is completely full, attempts to parse will return error number 10
in ucError.    ucReleaseExpr and ucReset can be used to release instructions from the definition space.

- Maximum speed generally is not obtained while running the program in the VB IDE (although it will still
be relatively fast).    The parser's routines run faster from a compiled program.

Help file generated by VB HelpWriter.

Getting Started
See also Introduction, and Contacting the Author

This document is written primarily with Visual Basic 5.0 users in mind.    The component itself however,
should be compatible with any compiler which supports 32-bit ActiveX technology.    If you are using
another compiler (including VB4) you should make sure you have up-to-date copies of VB 5.0 runtime
files which are listed at the bottom.

Installation

To install this component automatically, run the SETUP.EXE program.    This will place the files in the
proper Windows directory and registry.    You may also install the component manually in a temporary
directory by decompressing each file individually with EXPAND.EXE (or an equivalent utility).    Then
register the .DLL files with REGSVR32.EXE (or an equivalent utility).

Once the component is installed, in order to use it in your project, VB 5.0 users should go to the Project
menu and select References.    Click on the box next to UCALC Fast Math Parser .    VB 4.0 users will
find the component under the Tools / References menu selection.    After that, you are ready to add Fast
Math code to your program.    Other compilers may require different steps.

Context Sensitive Help and Examples

UCalc Fast Math Parser comes with a sample executable (ucSample.EXE) which demonstrate most of
the procedures, along with the source code for it (vb4sampl.* for VB4 and vb5sampl.* for VB5).    A good
way to familiarize yourself with the procedures is to click on the Object Browser icon.      Select
UcalcFastMath, and you will see the list of all the procedures with a short description for each one along
with the required arguments and data types.    Select an item on the list, and click on the Help icon
(which has a question mark) for more information.    Pressing F1 on a component keyword from within
your source code will also provide help for the desired item.    Compilers other than VB may have a
different way of doing this.

Component Files

Files which are part of this component:

README.TXT              Information about this component
FILE_ID.DIZ                    Brief description for shareware distributors
LICENSE.TXT                License agreement and disclaimer
UCALC.DEP                  Component dependency file
UCALC.DLL                    ActiveX component
UCALCDLL.HLP        Help file
UCALCDLL.CNT        Help file content list
VB4SAMPL.FRM    Visual Basic 4.0 sample form
VB4SAMPL.VBP    Visual Basic 4.0 sample project file
VB5SAMPL.FRM    Visual Basic 5.0 sample form
VB5SAMPL.VBP    Visual Basic 5.0 sample project file
UCSAMPLE.EXE    Executable demo

Runtime files required by this component:

MSVBVM50.DLL
STDOLE2.TLB
OLEAUT32.DLL
OLEPRO32.DLL
ASYCFILT.DLL

CTL3D32.DLL
COMCAT.DLL

These runtime files may have come with your copy of this component's setup.    If not please visit
http://www.ucalc.com/dll to obtain them.    If you obtain them from elsewhere, make sure the files are
up-to-date (check UCALC.DEP for file dates).

Help file generated by VB HelpWriter.

